EDICIóN GENERAL
183 meneos
9306 clics
La cinta de Moebius: el objeto con un solo lado que fascina a matemáticos, artistas e ingenieros

La cinta de Moebius: el objeto con un solo lado que fascina a matemáticos, artistas e ingenieros

Este extraño objeto matemático con un solo lado ha sido la inspiración no solo de académicos si no de artistas, diseñadores, ingenieros y arquitectos. ¿Qué hacen tan especial esta cinta que fue descubierta hace 150 años?

| etiquetas: cinta , moebius
  1. Siempre me parece gratuito el verbo "fascinar". Aboca a una subjetividad casi absoluta y relativa que no explica nada.

    Si esta cinta "fascina" será porque "interesa objetivamente" o "asombra".

    Para explicar la diferencia, os pongo un gif que a mí me fascina, pero que me interesa objetivamente poco y me asombra cero.

    Lo que no le quita la fascinación.  media
  2. Pues de todas la imágenes que han podido escoger para ilustrar la cinta lo hacen con una que juraría que no cumple con los requisitos. Tiene dos caras y desde una no vas a la otra. ¿Alguien mas lo ve?
  3. #3 a ver si van a existir infinitas, que estas cosas las carga el alef
  4. #3 la botella de Klein tampoco es una superficie orientable
  5. #7 Se dice reencarnación, y los veganos no pueden hacerlo por razones obvias. Ellos como mucho se quedan en estado vegetativo.
  6. #17 Venía a decir eso. Llevo rato con la nariz pegada a la pantalla. Hasta la foto de wikipedia les podría servir, pero ... :palm:
    Y la leyenda de la imagen: "La cinta de Moebius se usa como símbolo del infinito" xD
  7. #9 Me fascinan muchas cosas, entre ellas el cosmos, la física y la química, pero una cinta dada la vuelta me parece más bien objeto de estudio y tal vez de asombro (que es más que fascinación, dicho sea de paso) que de fascinación.

    Quiero decir que es una cinta girada. No es la antimateria ni el secreto del universo.

    La fascinación presupone un estado de embeleso que obstruye el pensamiento y lo estimula.

    Igual me equivoco, pero no veo el por qué de este caso.

    El por qué racionalizado, quiero decir.
  8. #25 Una cinta de moebius plana no tiene superficie interior
    La cinta de moebius de verdad, que es sólo teórica, no. Pero las "cintas de moebius" que se pueden construir, dado que tienen grosor, la cinta siempre tiene parte interior y exterior, y la exterior siempre es exterior y la interior siempre es interior. Sólo tienes que imaginarla "hueca", exactamente igual que estás haciendo con la esfera y con la cinta de sección circular. Por tanto te doy la razón sólo si hablamos de una cinta de moebius teórica bidimensional que se gira en una tercera dimensión, pero no te la doy si hablamos de cintas de moebius construíbles (de la noticia: "Hacer una cinta de Moebius es muy sencillo").
  9. #4 ¿Renacimiento? ¡Pero hombre! ¡El renacimiento es mentira!

    Si te mueres, te mueres...

    :palm:
  10. #15 #3 #18 Una esfera tiene una superficie interior y una superficie exterior, mismo caso que una cinta de sección circular, mismo caso que un toroide,mismo caso que la imagen de la entradilla donde sale una cinta de sección cuadrada, que tiene varias superficies exteriores e interiores.

    Una cinta de moebius plana no tiene superficie interior, por tanto solo tiene una superficie.
  11. #1 Anteriormente, en el Renacimiento....

    www.youtube.com/watch?v=mn81dQjXAvI
  12. #33 Uno de los mayores desastres de la bancapolítica actual. CN siempre fué más pequeña, pero más solvente y combativa que la anquilosada y endeudada CaixaGalicia. La "fusión" fué un abordaje indecente en toda regla, desmantelando CN para enjuagar las deudas de CG para luego venderla a Escotet.

    Y en el interín, nos robaron 9.000 millones de euros, solo en esta operacion. Que nadie ha devuelto :-(
  13. Recomiendo este video www.youtube.com/watch?v=AAsICMPwGPY sobre kelin blottles del gran Cliff Stoll, tambien el canal numberNumberphile.

    Bonus:
    The man with 1,000 Klein Bottles UNDER his house
    www.youtube.com/watch?v=-k3mVnRlQLU
  14. #17 justo. El artículo es una bazofia. Para empezar porque pone al mismo nivel un objeto tal como la cinta de Moebius, que no nos volvamos locos con lo de una sola dimensión porque tiene tres cómo todo en el mundo real, con los dibujos de Escher que lo que hacía era saltarse la tercera dimensión de un papel para crear dibujos irreales en el mundo real.
  15. #43 Si, justo ese es el origen de toda la "trapallada" que representó el desastre de las cajas gallegas. Una lástima, la verdad.
  16. En realidad la descubrió 100 años antes J.S. Bach cuando compuso el Canon del Cangrejo.
  17. #3 #6 Efectivamente existen infinitas, y en el espacio de 3 dimensiones (la botella de Klein sólo puede existir en 4 dimensiones).

    Para construir una cinta de Moebius se coge una tira, se gira uno de los extremos y se pegan esos extremos. Si en lugar de girarla una vez (media vuelta) la giramos 3 (vuelta y media) obtenemos otra superficie distinta también con una sola cara. Y si la giramos 5 otra. Y si la giramos 7 otra...
  18. Lazos amarillos???? indepes!
  19. #9 Yo me atrevo a definirlo como varón hetero o quizás bebé lactante superdotado para poder usar dispositivos tecnológicos.
  20. #31 Un familiar mio murió electrocutado haciendo un agujero con un taladro teniendo los pies mojados.

    Pero eso es normal.

    Un muerte por cinta de Moebius merece ser contada. Dinos cómo fué.
  21. #3 porque las cintas de sección circular no existen, supongo
  22. #3 #15 una bola también tiene una sola cara :-)
  23. #3 La de la imagen concretamente tiene dos.

    Si la cinta es plana tiene una sola cara.
  24. Que no tiene fin.
  25. #33 Ya desde el logo empezaban a liarte para calzarte unas preferentes, plan de pensiones o fondos de inversión.
  26. #14 Rebrocolización :-D
  27. #10 Ya bueno, igual es que tú y yo tenemos una cabeza muy cuadrada. Seremos muy binarios en ese aspecto a mí me ha fascinado más tu gif de las tetas también, no me malinterpretes.

    Aunque me parece respetable que a otro le parezca "fascinante" la cintita esta. Como has dicho, el quedarse embobado mirando algo es cosa de cada uno...  media
  28. Y fumados
  29. #7 No te digo trigo por no llamarte Rodrigo. :-D
  30. #31 Me temo que se ha equivocado usted de noticia a comentar
  31. Los gallegos (del sur mayormente) recordarán la extinta caja de ahorros Caixanova. Su logo era una cinta de Moebius

    .  media
  32. #42 Siendo simples la explicación está en la mayor exposición de CXG al sector inmobiliario - motivada por sus intentos de expansión peninsular - . Y una de las más gordas fue la "compra" de la gigante Fadesa por la pequeña Martinsa (que en este hilo recordaban un poco www.meneame.net/story/esta-historia-ambicion-palcos-futbol-credito-loc )
  33. #6 O alguno de sus hermanos mayores.
  34. #8 ¿No conoces a Spock?
  35. #23 El símbolo de infinito se creó un par de siglos antes que la cinta de Moebius. No he leído más del articulo, pero como todo tenga ese rigor....
  36. E ilustran la noticia con un objeto que tiene cuatro caras y no es ni de lejos una cinta de moebius. Genios!
  37. Paren las rotativas en 2018.
  38. #10 ¿te fascina la física? Pero si es solo una serie símbolos raros inventados. Ya ves. Que a ti una cinta de Moebius no te fascine no significa que a otros si. A ti te fascina la física porque la entiendes y sabes lo que implica, nada mas.

    #18 una bola es tridimensional y esta cinta es bidiemnsional. No se pueden comparar.
  39. Qué tiempos en los que se hablaba sobre la cinta de Moebius en la programación infantil.
  40. #8 Como has dicho, lo de sentirse fascinado es subjetivo. Me atrevo decir que no eres ni matemático ni artista ni ingeniero.
  41. #8 como la radio de un pintor, hoyga!
  42. #35 Lo divertido de hacer una de esas cintas es, cuando está terminada, coger un lápiz y dibujar una linea sin levantar el lápiz de la hoja, empezando en cualquier punto y terminando cuando se encuentra el sitio desde donde se empezó.
    A continuación se puede comprobar que la linea está siempre.
    Si ese mismo papel lo pegamos en aro, sabemos que al dibujar la linea finalizaremos con solo la mitad dibujada, la interior o la exterior.
    Por eso la cinta de Moebius es interesante.
  43. Es la única superficie con una sola cara.
  44. #19 Depende de cómo definas los ejes coordenadas.
  45. Si alguien se aburre y no lo ha hecho nunca:
    - Cójase una cinta de Moebius
    - Recórtese longitudinalmente por la mitad
    - Tachaaaaannn

    Y luego:
    - Cójase lo que ha salido
    - Recórtese longitudinalmente por la mitad
    - Tachaaaaannn
  46. #19 La cinta de Moebius como objeto matemático no tiene ni una ni tres dimensiones, tiene 2.
  47. Desgraciadamente un familiar directo mío falleció hace poco de esto.
    Este tipo de noticias luego no se por que pero se pierden en el tiempo y los hospitales nunca llegan a saber nada
  48. #37 Los símbolos raros sirven para representar los conceptos. Son sólo una herramienta. La física consiste en el conocimiento de esos conceptos, no en los símbolos que podrían ser otros o incluso no existir. Isaac Newton no usaba símbolos de estos que gastamos ahora.
  49. #8 Tengo ese video pero lo quité de compartir porque me daba miedo que algún subnormal le diera por considerarlo pornografía infantil. Sobretodo la escena de la bañera. No lo era y no lo es, pero los criterios para llamar a algo porno infantil han cambiado una barbaridad desde entonces y no me fio. Simple precaución.

    ¿Como se llamaba esa nena? Ahora debe tener más de 40.
  50. #44 ¿no has entendido que esa frase era una forma absurda de describir la física?
  51. #50 Pos no. Tendrías que usar caritas. ?(
  52. #51 Pensaba que era lo suficientemente exagerado y que se notaría. Para la próxima me pasaré mas.
  53. #52 Eso es. Muchas gracias.

    Yo siempre añado una frase final mucho más exagerada para evitar malentendidos, y no siempre sirve.
  54. #25 Si es plana, no es una cinta de Moebius.
  55. #14 Algunos pasan a floración.
  56. #29 Solo impares o solo primos?
comentarios cerrados

menéame